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Abstract. A simply periodic wave in the nonlinear Toda lattice is discussed. The original
solution by Toda needs to be amended, especially its dispersion relation. It is a special case of
more general solutions that include the cases of expanded (or shrunk) lattices. The dispersion
relation should be determined by prohibiting the expansion. This problem is investigated from
the viewpoint of the inverse spectrum problem. A simply periodic solution, which corresponds
to a single-gap spectrum, is explicitly expressed as a function of the spectrum by using the
theories of algebraic functions and orthogonal polynomials. The parameters that connect the
solution with the spectrum are introduced, and it is then shown that the one that was regarded
as the dispersion relation is an inevitable relation among the parameters.

1. Introduction

In the late 1960s, Toda (1967a, b) discovered a nonlinear lattice that is now called the Toda
lattice. It is a system of particles on a chain with nonlinear mutual interactions between
adjacent particles, and rigorously bears periodic wavesolutions or solitary wavesolutions
(solitons) (see also Toda (1981)). The equation of motion is written as

d2yn

dt2
= exp[−(yn−yn−1)] − exp[−(yn+1−yn)] (1.1)

whereyn = yn(t) is the displacement of the particle at thenth site,n ∈ Z. Equation (1.1)
is often treated in the form:

d2rn

dt2
= −exp(−rn−1)+ 2 exp(−rn)− exp(−rn+1) (1.2)

where rn = rn(t) = yn+1 − yn. Everyone recognizes this lattice as a typical example of
solvable nonlinear systems.

The solution found first in the Toda lattice is the one that Toda (1967a) presented in his
original paper. He showed thatrn given by

exp(−rn) = 1+
(
Kω

π

)2 [
dn2

(
K

π
(nκ−ωt+δ)

)
− E

K

]
(1.3)

together with the relation

ω = ±ωToda(κ) ωToda(κ) ≡ π

K

[
1

sn2(Kκ/π)
− 1+ E

K

]−1/2

(1.4)
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satisfies (1.2). From this fact Toda claimed a set of (1.3) and (1.4), which we hereafter refer
to as the Toda solution, gives asimply periodicwave-like solution in his lattice, and called
(1.4) thedispersion relationof this periodic wave.

Throughout this paper we bear it in mind that the periodicity is in botht andn. Because
we are considering an infinite lattice, we must regardκ as continuous. Whenκ/2π is
irrational, strictly speaking, such a function as (1.3) is not periodic inn but quasiperiodic.
For simplicity we hereafter regard the term ‘periodic’ (inn) as inclusive of the quasiperiodic
case.

Without a doubt, a simply periodic solution is one of the most fundamental solutions. It
seems that the Toda solution has been accepted as this. In fact, however, one must amend it,
especially its dispersion relation, if it is necessary for the term ‘periodic solution’ to denote
a periodicyn. In section 2 we make this fact clear, and show that a relation different from
(1.4) is necessary for a periodicyn. As far as the present author is concerned, none have
explicitly pointed it out, although he briefly referred to it several years ago (Yoshino 1988).

It is now well known that the Toda lattice problem can be treated in the Lax form
(Flaschka 1974). Then one can obtain solutions through the inverse spectrum problem,
as Kac and van Moerbeke (1975a, b) and Date and Tanaka (1976a, b) discussed (hereafter
referred to as KMDT). Their results, however, do not seem to be clear enough to treat a
simply periodic wave. The principal end of this paper is to obtain an expression for the
solution in the form of a simple and explicit function of the spectrum, and then to discuss
what the dispersion relation is in this framework, which we give in sections 3 and 4. We use
the theories of algebraic functions and orthogonal polynomials. It is also widely understood
that simply periodic solutions include a one-soliton solution as a limiting case. We take this
limit in section 5. We conclude this paper in section 6.

2. Analysis of the Toda solution and an expression foryn

We do not treat a set of (1.3) and (1.4) as it is. We rewrite (1.3) as

exp(−rn) =
(
Kω

π

)2 [cn2(Kκ/π)

sn2(Kκ/π)
+ dn2

(
Kxn

π

)]
xn = xn(t) ≡ nκ − ωt + δ.

(2.1)

A set of (2.1) and (1.4) is evidently equivalent to the Toda solution. In the following we
show that equation (2.1) solely satisfies (1.2) irrespective ofω or κ.

We rewrite (2.1) in terms of the elliptic theta functions which are often more tractable
than the Jacobian elliptic functions. There are several kinds of notations for the theta
functions. In this paper we adopt the notation used in Whittaker and Watson (1927)
(hereafter referred to as WW), i.e. they are written asϑj (z, q) (≡ ϑj (z|τ); j = 1, 2, 3, 4;
q = eiπτ ), and the zeros ofϑ1(z|τ) are atz = π(l+mτ) (l, m ∈ Z), etc. For brevity we omit
the second argument,q (called nome) orτ , except in section 5, as we have been omitting
the modulus (usually referred to ask) from the Jacobian functions and the complete elliptic
integralsK andE.

Equation (2.1) then becomes

exp(−rn) = 1
4ϑ

2
3ϑ

2
4ω

2

[
ϑ2

2(
1
2κ)

ϑ2
1(

1
2κ)
+ ϑ

2
3(

1
2xn)

ϑ2
4(

1
2xn)

]
(2.2)

=
[

ϑ ′1ω
2ϑ1(

1
2κ)

]2
ϑ4(

1
2xn−1)ϑ4(

1
2xn+1)

ϑ2
4(

1
2xn)

. (2.3)
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We have reduced (2.2) to (2.3) by using the identity (see WW, p 488):

ϑ2
2ϑ4(z + a)ϑ4(z − a) = ϑ2

1(a)ϑ
2
3(z)+ ϑ2

2(a)ϑ
2
4(z).

Then we readily observe that equation (1.2) holds in such a manner as

l.h.s. = 1
4ϑ

2
3ϑ

2
4ω

2

[
−ϑ

2
3(

1
2xn−1)

ϑ2
4(

1
2xn−1)

+ 2
ϑ2

3(
1
2xn)

ϑ2
3(

1
2xn)
− ϑ

2
3(

1
2xn+1)

ϑ2
4(

1
2xn+1)

]
= r.h.s.

The reduction of the r.h.s. is direct from (2.2). The l.h.s. is reduced by using (2.3) and the
identity†:

d2

dz2
lnϑ4(z) = ϑ2

3ϑ
2
4

ϑ2
3(z)

ϑ4(z)
+ ϑ

′′
2

ϑ2
. (2.4)

We have thus shown that equation (2.1) solely satisfies (1.2).
We should impose periodicity onyn as mentioned before. We thus need to obtain an

expression foryn. It is easy to expressyn − y0 from (2.3). However, we intend to express
yn without any reference to other displacements. Let

fn = fn(t) = yn + ln

[
ϑ4(

1
2xn)

ϑ4(
1
2xn−1)

]
then we obtain

fn+1 = fn + 2 ln

∣∣∣∣∣2ϑ1(
1
2κ)

ϑ ′1ω

∣∣∣∣∣ d2

dt2
fn = 0. (2.5)

The former of (2.5) is direct from (2.3), and the latter is from (1.1), (2.2) and (2.4). We
thus readily obtain from (2.5)

yn = A+ V t + 2n ln

∣∣∣∣∣2ϑ1(
1
2κ)

ϑ ′1ω

∣∣∣∣∣+ ln

[
ϑ4(

1
2xn−1)

ϑ4(
1
2xn)

]
(2.6)

whereA andV are arbitrary (integration) constants dependent on neithert nor n.
Equation (2.6) does not always give a periodicyn. In order for yn to be periodic in

both t andn, two conditions:V = 0, and

ω = ±ωperi(κ) ωperi(κ) ≡
2ϑ1(

1
2κ)

ϑ ′1
(2.7)

are necessary (and sufficient). We can readily make the former hold becauseV is arbitrary.
The latter states thatω is no longer arbitrary but must be a function ofκ (and q). This
should be interpreted as the dispersion relation for the simply periodic wave.

When |ω| differs from ωperi(κ), then yn is not periodic inn, and the lattice exhibits
uniform expansion (when|ω| < ωperi(κ)) or shrinkage (when|ω| > ωperi(κ)) if we regard
yn as longitudinal. The dispersion relation (2.7) is thus equivalent to the condition that the
lattice should not expand or shrink.

We see thatωToda(κ) differs from ωperi(κ), because the latter is an entire function as
a function ofκ ∈ C while the former is not. Namely, the Toda solution does not give a
periodicyn. We noteωToda(κ) < ωperi(κ) everywhere in 0< κ < π , where the inequality
may become the equality in some limiting cases, for exampleq → 0.

Finally in this section we make three remarks on solution (2.6).

† This identity is rarely referred to in this form. It is usually found in the form: dn2u = (d2/du2) ln2(u)+E/K,
where2(u) is the Jacobian theta function:2(u) = ϑ4((π/2K)u) (see WW, pp 479 and 518).
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(i) In (2.6) there are four arbitrary parameters unless the periodicity is imposed onyn.
They areV , ω, κ andq. We do not take two constants,A andδ, into account, because they
merely play the roles of fixing the origins ofyn and t , respectively. When we impose the
periodicity, two of the four become fixed and the other two (i.e.κ andq) remain arbitrary.

(ii) Because the differentiation with respect tot in (1.1) or (1.2) is of the second order
only, both positive and negative signs are allowed forω. So we needed to write the double
sign (±) in (2.7). We can, however, regardω as positive definite based on the following
consideration. Evidently, we can takeκ in 0 < κ < 2π . We can then rewrite the theta
functions in (2.6) as

ϑ4(
1
2[nκ−(−ω)t+δ]) = ϑ4(

1
2(nκ

′−ωt−δ)) κ ′ = 2π − κ
which implies that a pair of−ω (< 0) andκ is equivalent to a pair ofω (> 0) and 2π − κ.
We can thus remove the double sign from (2.7).

(iii) In the last (most significant) term in (2.6), the theta functions appear in the form
of a quotient. It might be useful if one could write it in terms of the Jacobian elliptic
functions. However, one cannot do so. The reason is that the theta quotient is not a doubly
periodic function. Letϑ4(z− 1

2κ)/ϑ4(z) ≡ χ(z) and regard it as a function ofz (≡ 1
2xn)

∈ C. Thenχ(z+π) = χ(z) is trivial, andχ(z+πτ) = exp( 1
2iκ)χ(z) (WW, p 463). So we

cannot find the second periodicity whenκ/2π is irrational, althoughχ(z) becomes doubly
periodic with periodsπ and 2mπτ (ormπτ if l is even) whenκ/2π is accidentally rational
(= l/m).

3. Preliminary considerations for the inverse problem

In this paper we define the Lax-form variables in a slightly different manner from Flaschka
(1974) or KMDT. We let

an = an(t) = exp[1
2(yn − yn+1)] bn = bn(t) = dyn

dt
(3.1)

and introduce two tridiagonal matrices,L = L(t) (symmetric) and B = B(t)
(antisymmetric), whose elements at(i, j) are (n ∈ Z)

Li,j =


bn (i, j) = (n, n)
an (i, j) = (n, n+1) or (n+1, n)

0 otherwise

(3.2)

Bi,j =


1
2an (i, j) = (n+1, n)

− 1
2an (i, j) = (n, n+1)

0 otherwise.

(3.3)

These matrices must beinfinite-dimensional because we are also concerned with
quasiperiodic cases. The equations of motion foran, bn andL become

dan
dt
= 1

2an(bn − bn+1)
dbn
dt
= a2

n−1− a2
n (3.4)

dL
dt
= BL − LB . (3.5)

It then follows from (3.5) (Flaschka 1974) thatL(t) is unitarily equivalent toL(0), i.e.
the spectrum ofL(t), say F , is conserved ast . Therefore we can constructL(t) (and
yn(t) throughan(t)) from thus conservedF by way of the inverse problem (see also van
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Moerbeke (1976)). We should note its dependence onn that we can obtain from a solution
of the inverse problem. We need to use (3.4) or (3.5) to determine its dependence ont .

The simply periodic solution corresponds to a band spectrum composed of two subbands
separated by a gap:

F = [λ4, λ3] + [λ2, λ1] λ4 < λ3 < λ2 < λ1.

The solution in this framework was given by KMDT, but it does not seem to be clear. One
reason is, we think, that they did not give an expression foryn (nor an) in the form of an
explicit function ofF . In this paper we do so.

3.1. Qualitative and quantitative parameters

We classify the spectra from the following elementary consideration. We linearly transform
L as

L → L′ = cL + dI (c > 0) i.e. {an, bn} → {a′n, b′n} = {can, cbn+d}
then evidentlyF → F ′ = {λ′ = cλ+d|λ ∈ F }. In this sectionF ′, λ′, c andd are read in this
manner. It is natural to regard the new (primed) system as being substantially equivalent to
the original system. We thus introduce a class of the spectra by this equivalency. Hereafter
we use the symbol0 to denote the class:

F ∈ 0 = {F ′|c, d ∈ R; c > 0}.
Briefly speaking, the class is composed of spectra whose configurations are proportional to
one another.

It is obvious thatF is characterized by four scalars, i.e. byλm (m = 1, 2, 3, 4). The
above classification strongly suggests that we should rather take two kinds of parameters
to characterizeF ; those that play the roles of identifying a class to whichF belongs, and
those that identifyF in the class. We call the formerqualitative and the latterquantitative.
In other words, qualitative parameters, which must be class functions of0, determine the
relative structure of a spectrum, and quantitative parameters are, asc andd in the above,
the scaling and the translating factors of the spectrum or the corresponding matrix. Anyλm
is, by itself, neither qualitative nor quantitative. In the next section we shall use parameters,
each of which is of either kind. Evidently, two quantitative (scalar) parameters are necessary
and sufficient, as which we shall choose a pair that behaves the same as a pair ofc andd.
Then exactly two qualitative parameters are necessary and sufficient.

3.2. Algebraic functions and canonical basis

According to KMDT, algebraic functions associated with [R(λ;F)]1/2 are essential, where

R(λ;F) ≡ (λ− λ1)(λ− λ2)(λ− λ3)(λ− λ4).

The corresponding Riemann surface, sayS, is of genus unity. It consists of two replicas
of the Riemann sphere, which are both cut along [λ4, λ3] and [λ2, λ1], and glued to each
other at the cut edges. We denote one replica byCp (which is often called the physical
sheet) and the other byCu (the unphysical sheet). Each replica contains the infinity point,
which we denote by∞ on Cp and by∞∗ on Cu. We make symbolsλ, λ1, etc, denote not
only a point onS but also its value (its projection onC). We hereafter write [R(λ;F)]1/2

meaning a branch such that [R(λ;F)]1/2/λ2→ 1 (or−1) for λ→∞ (or∞∗).
According to the convention (Siegel 1969, p 49) we canonically dissectS as is shown in

figure 1(a). We then obtain a simply connected cut surfaceSc surrounded by the oriented
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(a) (b)

α
β

λ1λ2

λ3

λ4

∞∞*

λ1

λ2λ3

λ4

α

β−1

α−1

β

Figure 1. The Riemann surfaceS is canonically dissected as in (a). The full and the broken
curves denote they are inCp andCu, respectively. Then the dissected surfaceSc looks like (b).
In (b) we show by four kinds of triangles which half (ofCp or Cu) the area is;M andN denote
the upper halves ofCp andCu, respectively, andO andH mean the lower halves ofCp and
Cu, respectively. If we cutS along the zebra strap shown in (b) (without cutting alongα or β)
then we obtainS∗.

boundary∂Sc, which is generated by a pair of crosscutsα and β: ∂Sc = αβα−1β−1.
Figure 1(b) schematically shows where the upper and the lower halves of each replica are
located (and how they are dissected) inSc.

By the canonical dissection we introduce the canonical basis of the first-kind Abelian
differential: du (λ;F) ∝ dλ /[R(λ;F)]1/2, which is normalized by theα-period and defines
a constantτ by theβ-period:

u(α;F) ≡
∫
α

du (λ;F) = π u(β;F) ≡
∫
β

du (λ;F) = πτ. (3.6)

As is well known,τ (or the correspondingq) becomes the second argument of the relevant
theta functions. We readily see thatτ is pure imaginary with a positive imaginary part and
is qualitative:τ = τ(0), which impliesq ∈ R andq = q(0).

We define the integral of du (λ;F) by

u(λ;F) =
∫ λ

λ4

du (λ;F)

which bears multivalency onS caused by (3.6). We have located the origin of the integration
at λ4 merely for simplicity. Figure 2 shows howu(λ;F) varies whenλ moves inSc.

3.3. Orthogonal polynomials and the exterior mapping function

The present problem is closely related throughL to the theory of orthogonal polynomials†
defined by a weight whose support isF , although a semi-infiniteL is treated in the latter
(Magnus 1979, Turchiet al 1982, Peherstorfer 1991).

The orthogonal polynomials onF , especially their asymptotic behaviours, are well
described in terms of an exterior mapping function ofF (Yoshino 1987), which we denote
by8(λ;F). It is an analytic function defined uniquely by the following, accompanied with
the introduction of three definite functions ofF . We refer to the three functions asγ (F ),
3(F) andκ(F ). The function8(λ;F) behaves around∞ (∈ Cp) as

8(λ;F) = λ−3(F)+O(λ−1) (3.7)

† In the theory of orthogonal polynomials it is a convention that diagonal elements are referred to asan and
off-diagonal elements are refered to asbn, unlike the Toda lattice problem.
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(a)  λ surface

(b)  u(λ) plane

π/2

πτ/2

u(λ3) u(λ2)

u(λ1)

u(λ4)

u(∞)u(∞*)

u(   )

u(   )

λ1λ2λ3λ4

Figure 2. The behaviours ofu(λ;F) whenλ mainly moves along the real axis. The full and
the broken curves denote that they are inCp andCu, respectively.M andO mean the upper
half and the lower half, respectively, ofCp.

γ(F)

Φ(λ2+i0)

Φ(λ1+0)

Φ(λ3+i0)

Φ(λ2−i0)
Φ(λ3−i0)

Φ(λ4−0)λ1λ2λ3λ4

(a)  λ surface

(b)  Φ(λ) plane

O

κ(F)/2

κ(F)/2

Figure 3. Schematic depiction of the exterior mapping function:8(λ;F). (a) shows the
physical sheet. The second argumentF is omitted in (b) for brevity.

(by which 3(F) is defined), and maps the exterior of [λ4, λ1] in Cp conformally onto
the exterior of a disk, with two whiskers issuing, centred at the origin as is shown in
figure 3. The functionκ(F ) is defined as twice the argument of the upper whisker in
figure 3(b), and 0< κ(F) < 2π . We shall later (in section 4.1) see thatκ(F ) equals the
wavenumber of the periodic wave. The functionγ (F ) (> 0) is defined as the radius of
the disk. It equals a quantity that appears in several situations in mathematics, and thus
has several names according to the situations: transfinite diameter, logarithmic capacity and
Tchebycheff constant (Hille 1962).

By definition we find8(λ′;F ′) = c8(λ;F) = λ′ − d − c3(F)+ · · ·, which gives rise
to the relations:

γ (F ′) = cγ (F ) 3(F ′) = c3(F)+ d. (3.8)

Equations (3.8) imply that we can chooseγ (F ) and 3(F) as a pair of quantitative
parameters, and hereafter we do so.

There is a more confirmative reason why we adopt this pair. From the analysis of asymp-
totic behaviours of orthogonal polynomials we obtain the limiting relations (Yoshino 1987):

lim
n→∞

( n−1∏
j=0

aj (t)

)1/n

= γ (F ) lim
n→∞

(
1

n

n−1∑
j=0

bj (t)

)
= 3(F). (3.9)
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These relations, which give rise to (3.8) again, definitely show thatγ (F ) and3(F) are
measures of the size (width) and the centre (in some sense) ofF , respectively. In terms
of the Toda lattice problem, they are directly related to a uniform expansion (or shrinkage)
and a velocity of a translational motion, respectively (see definitions (3.1)). Namely, this
pair bears substantial connections with bothF andyn.

3.4. Multivalency of the exterior mapping function

We note that8(λ;F), which was defined inCp, can be analytically continued toCu.
Nevertheless it is not algebraic nor univalent onS. In order to understand the multivalency
it is useful to examine its logarithmic differential: dφ (λ;F), φ(λ;F) ≡ ln8(λ, F ). It has
the form of (Yoshino 1987)

dφ (λ;F) = λ− s
[R(λ;F)]1/2

dλ (s ∈ (λ3, λ2) ⊂ R) (3.10)

i.e. it is an Abelian differential of the third kind onS. The poles are at∞ and∞∗ with
the residues−1 and 1 respectively. A contour integral that encloses the pole or poles thus
induces the additive multivalency ofφ(λ;F) by an integral times 2π i, which does not
make8(λ;F) multivalent. In view of theα-period and theβ-period, we obtain from the
properties shown in figure 3

φ(α;F) ≡
∫
α

dφ (λ;F) = 0 φ(β;F) ≡
∫
β

dφ (λ;F) = −iκ(F ). (3.11)

Namely, the multivalency of8(λ;F) results from thisβ-period only.
We see that theβ-period is brought about by a round trip ofλ (on S) in the vertical

direction in figure 1(b). We can thus avoid the multivalency of8(λ;F) if we prohibitλ from
making such a round trip. We hence cutS along the zebra strap shown in figure 1(b), and
hereafter regardλ as moving in this cut surface, which we denote byS∗. It is topologically
equivalent to a tube with both ends open or a balloon with two holes. Then8(λ;F)
becomes univalent. Any point, such as∞, λ1, etc, is also regarded as being located inS∗.
The strap, which is closed onS, runs just above the dotted line:λ3−λ2−λ3 in figure 1(b).
The imaginary part ofu(λ;F) hence becomes definite for anyλ ∈ S∗, and ranges as (see
figure 2(b))

− 1
2π(τ/i) < =u(λ;F) 6 1

2π(τ/i).

We should regard the first inequality as inclusive of the equality in some limiting cases.
For example, we should writeu(λ3 ± i0;F) = ∓ 1

2πτ (modπ ) (noteλ3 ≡ λ3 − i0) in Cp,
and the sign becomes opposite inCu. We need to bear in mind thatu(λ;F) still has the
ambiguity in modπ on S∗.

3.5. Estimates forω(F) andκ(F )

According to KMDT, the angular frequencyω(F) and the wavenumberκ(F ) of the simply
periodic wave are related to du (λ;F) andu(λ;F) by

du (λ;F) = − 1
2ω(F)

[R(λ;F)]1/2
dλ (3.12)

u(∞;F) = −u(∞∗;F) = 1
4κ(F ). (3.13)

In this paper we regardω(F) as a constant defined by (3.12). In view ofκ(F ), in contrast,
we have already defined it (in section 3.3) by the argument of8(λ2±i0) or 8(λ3±i0) (see
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figure 3(b)), or equivalently by the latter of (3.11). We see thatκ(F ) given by (3.13) is
consistent with our definition, because integration ofu(λ;F)dφ (λ;F) over ∂Sc becomes

−u(β;F)φ(α;F)+ u(α;F)φ(β;F) = 2π i[u(∞∗;F)− u(∞;F)]
(see (3.6) and (3.11)), where the residues of dφ (λ;F) are used on the r.h.s. Therefore we
can regardκ(F ) as being defined by (3.13).

Equation (3.12) gives rise to du (λ′;F ′)/ω(F ′) = c−1 du (λ;F)/ω(F ) because
R(λ′;F ′) = c4R(λ;F). The normalization of du (λ;F) thus impliesω(F ′) = cω(F ),
i.e.ω(F)/γ (F ) is qualitative whileω(F) itself is not. It also implies, directly from (3.13),
that κ(F ) is qualitative by itself:κ(F ) = κ(0).

4. Solution through the inverse problem

We are now ready to obtain a solution of the inverse problem. We follow a procedure
based, to a large extent, on algebraic function theory (see Siegel (1971)). Namely, we shall
express an algebraic function (ofλ on S), 8(λ;F) or a product of them, any of which is
univalent inS∗, in terms of the theta functions whose arguments containu(λ). We contract
u(λ;F) asu(λ) for brevity. The second argumentτ of the theta functions is the one given
by (3.6), which we do not explicitly specify.

We first emphasize the following. In our derivation,ω(F) and κ(F ) are constants
(independent ofλ) defined by (3.12) and (3.13), respectively. We shall then show that the
angular frequency and the wavenumber are given by them. Hereafter we often refer toκ(F )

asκ for brevity.

4.1. Expression foran as a function of the spectrum

We derive an expression foran by taking three steps. We first suppose thatF generates a
(quasi)periodic sequence of{an, bn}, and then introduce a function:

gn(λ;F) = 1

λ− bn − a2
n/{λ− bn+1− a2

n+1/[λ− bn+2− a2
n+2/(λ− · · ·)]}

(4.1)

= 1

λ− bn − a2
ngn+1(λ;F) (4.2)

= λ−1+ bnλ−2+O(λ−3) asλ→∞. (4.3)

We definegn(λ;F) by the continued Jacobi fraction of (4.1) forλ ∈ Cp at a sufficient
distance fromF , and then analytically continue it toS, which makes it algebraic onS
(Magnus 1979). It has two simple zeros, one of which is∞ as equation (4.3) shows, and
two simple poles, one of which is∞∗. The other zero, sayζn, is located in [λ3, λ2] on
eitherCp or Cu according to the occasion, and the case is the same with the other pole, say
πn. Namely, they are both located at one open end of the tube to whichS∗ is equivalent,
or just below the zebra strap in figure 1(b). We thus obtain (see also figure 2(b))

=u(ζn) = =u(πn) = 1
2π(τ/i).

We readily findζn = πn+1 because of the recursion relation (4.2). We also have

u(ζn)+ u(∞) = u(πn)+ u(∞∗) (modπ )

by applying the theorem of Abel (Siegel 1971, p 144) togn(λ;F). Therefore we obtain

u(ζn) = u(πn+1) = u(ζ0)− 1
2nκ (modπ ) (4.4)
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i.e. {u(ζn)} and{u(πn)} form arithmetic sequences.
The fact that∞∗ is a pole ofgn(λ;F) implies (see (4.2) again)λ−bn−a2

ngn+1(λ;F) =
O(λ−1) asλ→∞∗, i.e.

gn(λ;F) = (a2
n−1)

−1
λ+O(λ0) asλ→∞∗ (4.5)

which, we note, containsan−1 despite the fact thatgn(λ;F) was defined withoutan−1 in
(4.1). This is never an inconsistency because all elements of{an, bn} are related to one
another throughF .

Next we examine8(λ;F). Let us traceφ(λ;F) for λ moving as∞ → λ4 → ∞∗
(along the segment in figure 1(b)) with (3.7), (3.10) and8(λ4;F) = −γ (F ) (see figure 3)
taken into account. Then we find

8(λ;F) = γ (F )2λ−1+O(λ−2) asλ→∞∗. (4.6)

We can thus rewrite (3.7), (4.3), (4.5) and (4.6) in a form:

gn(λ;F)8(λ;F) =
{

1+O(λ−1) asλ→∞
[γ (F )/an−1]2+O(λ−1) asλ→∞∗. (4.7)

Although it is not algebraic,8(λ;F) can be expressed in terms of the theta functions
because its logarithmic differential is of the third kind with integral residues. We then
obtain†

8(λ;F) = γ (F )ϑ1(u(λ)−u(∞∗))
ϑ1(u(λ)−u(∞)) (4.8)

by using the residues (−1 at∞ and 1 at∞∗ as given in section 3.3) and8(λ4;F) = −γ (F ).
Note the ambiguity ofu(λ) may change the sign ofϑ1(u(λ)−· · ·), but in any case the r.h.s.
of (4.8) is kept invariant.

Equation (4.8) shows again that the arguments of the whiskers in figure 3(b) equal
± 1

2κ(F ), for we obtain, for example

ϑ1(u(λ3± i0)−u(∞)) = ϑ1(∓ 1
2πτ− 1

4κ) = ∓i exp(− 1
4iπτ∓ 1

4iκ)ϑ4(
1
4κ)

from the second half period (1
2πτ ) relations (WW, p 464) (the signs of the second and

the third expressions can become opposite due to the ambiguity ofu(λ3 ± i0) in mod π ).
Hereafter we shall often apply the second half period relations without notice.

Bearing (4.7) in mind, we finally consider a function:gn(λ;F)8(λ;F). Its logarithmic
differential is of the third kind with poles atζn and πn whose residues are 1 and−1
respectively. We hence obtain

gn(λ;F)8(λ;F) = ϑ1(u(∞)−u(πn))ϑ1(u(λ)−u(ζn))
ϑ1(u(∞)−u(ζn))ϑ1(u(λ)−u(πn))

= ϑ4(
1
2(n−1)κ− 1

2σ)ϑ4(u(λ)−u(∞)+ 1
2nκ− 1

2σ)

ϑ4(
1
2nκ− 1

2σ)ϑ4(u(λ)−u(∞)+ 1
2(n−1)κ− 1

2σ)
(4.9)

where we have used the value at∞ (see (4.7)), substituted (4.4), and let

u(ζ0) = u(∞)+ 1
2πτ + 1

2σ (σ ∈ R). (4.10)

† Strictly speaking, we must settle a factor of exp[Cu(λ)] (C ∈ C) by which the r.h.s. of (4.8) can be multiplied.
We obtainC = 0 by the univalency of8(λ;F) in S∗ and the fact that8(λ;F) ∈ R for λ ∈ (−∞, λ4]. Similar
considerations are necessary in other third-kind differential cases.
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We then obtain by using the value at∞∗ (see (4.7) again)

an = γ (F )
[ϑ4(

1
2vn−1)ϑ4(

1
2vn+1)]1/2

ϑ4(
1
2vn)

(4.11)

vn = vn(t;F) ≡ nκ(F )− σ. (4.12)

We have thus found that the wavenumber equalsκ(F ) (defined by (3.13)), as expected in
section 3.5. We note that equation (4.11) has a form that explicitly reflects the first of
relations (3.9). We do not write an expression forbn, because it is less simple than (4.11)
and seems to be less useful to derive an expression foryn (see (3.1)).

Among the quantities that have appeared in this section, we see thatγ (F ), κ(0), τ(0)
and the functional forms ofu(·;F), 8(·;F) andϑj (·|τ) are independent oft , because they
depend only onF that is conserved ast . Variables that depend ont arean, ζn, πn, vn, σ
and (the functional form of)gn(·;F). It thus suffices to examine the dependence ofσ , for
we can relate any other variable toσ through (4.10) or (4.12).

4.2. Dependence on time

We determine the dependence ofσ on t . For this purpose we derive an equation of motion
for gn(λ;F). We rewrite the eigenvalue equation forL(t), i.e. L(t)ψ(λ, t) = λψ(λ, t), into
a form (see (3.2)):

an−1(t)ψn−1(λ, t)+ bn(t)ψn(λ, t)+ an(t)ψn+1(λ, t) = λψn(λ, t) (4.13)

ψn(λ, t) being thenth element ofψ(λ, t). We see thatλ is independent oft because of the
unitary equivalency betweenL(t) and L(0), and then regard it as a variable inS∗, i.e. we
treat it in the same manner as in the preceding sections. We must bear in mind that there
are two independent variables,λ and t , in the following argument. We thus writegn(λ, t)
for gn(λ;F). We denote the (partial) differentiation with respect tot by ∂t .

Equation (4.13) has two linearly independent (concerningn) solutions for anyλ (with t
fixed), because it is a three-term recursion relation. We choose the solutions, sayψ+(λ, t)
andψ−(λ, t), such that

ψ±n (λ, t) ∝ λ±n asλ→∞ (∈ Cp)

for n > 0, i.e.∞ is an n-fold pole for ψ+n or an n-fold zero forψ−n . We easily obtain
ψ+ by letting ψ+−1(λ, t) = 0 andψ+0 (λ, t) = 1, and using (4.13) one after another (as
n=0, 1, 2, . . .), which evidently generatesψ+ such thatψ+n (λ, t) is ann-degree polynomial
of λ. We constructψ− recursively by†

ψ−0 (λ, t) = 1 ψ−n (λ, t) = an−1(t)gn(λ, t)ψ
−
n−1(λ, t). (4.14)

This has the desired behaviour atλ→∞ as equation (4.3) directly shows, and makes (4.13)
hold by virtue of (4.2). We can haveψ±n for n < 0 in a similar manner as forn > 0, i.e. by
applying (4.13) and (4.14) reversely, but they are not necessary in the following argument.

It is shown by using (3.5) (Toda 1981) that each∂tψ
±(λ, t) − B(t)ψ±(λ, t) is also a

solution of (4.13) (with the sameλ asψ±(λ, t)), i.e. it is expressed by a linear combination
of ψ+(λ, t) andψ−(λ, t), the coefficients being functions ofλ and t (but independent of
n). Let us take∂tψ

− −Bψ−, then the linear combination for it cannot involveψ+ because

† We can find such a weight onF that {ψ+n (λ, t)|n=0, 1, 2, . . .} forms a system of (normalized) orthogonal
polynomials. Then{g0(λ, t)ψ

−
n (λ, t)|n=0, 1, 2, . . .} is a system of the second-kind functions,g0ψ

−
n being related

to ψ+n by the Stieltjes transform (see Yoshino (1987)).
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of the behaviours atλ→∞ for n� 1. We thus obtain by using a suitable functionf (λ, t)
(analytic with respect toλ)

∂tψ
−(λ, t)− B(t)ψ−(λ, t) = f (λ, t)ψ−(λ, t)

which leads to the equation of motion forgn(λ, t) (= ψ−n /an−1ψ
−
n−1):

∂t [gn(λ; t)] = 1− (λ− bn)gn(λ; t)+ a2
n−1g

2
n(λ; t) (4.15)

after slightly tedious calculations using (3.3), (3.4), (4.2) and (4.14).
We determine the dependence ofσ by letting λ → ζn in (4.15). We obtain (see (4.4)

and (4.10), and note thatζn is a zero ofgn(λ; t))

∂tσ = 2∂t [u(ζn)] = γ (F )
2ϑ1(

1
2κ)

ϑ ′1
(4.16)

because equations (4.8) and (4.9), with (4.4) substituted, lead to

gn(λ, t) = −ϑ ′11u
γ (F )ϑ1(

1
2κ)
+O(1u2) 1u = 1u(λ, t) ≡ u(λ)− u(ζn)

for λ→ ζn. Evidently, the quantity given by (4.16) is nothing but the angular frequency.
Equation (4.12) then becomes

vn = nκ(F )− γ (F )
2ϑ1(

1
2κ)

ϑ ′1
t + δ (4.17)

whereδ is an integration constant. Equation (4.11) now becomes complete as an expression
for an = an(t).

4.3. Expression foryn

Let us expressyn. Equation (4.11) is substantially the same as (2.3). In the present case,
unlike in section 2, we want to haveyn expressed in the form of a function ofF . To do so
the second of (3.9) is useful (see the argument in section 3.3), and we obtain

yn = A+3(F)t − 2n ln γ (F )+ ln

[
ϑ4(

1
2vn−1)

ϑ4(
1
2vn)

]
(4.18)

whereA is an integration constant. In the solution foryn, i.e. (4.18) accompanied with
(4.17), we find four parameters unless we take the integration constants,A and δ, into
account (see remark (i) in section 2). Two,γ (F ) and3(F), are quantitative, and the other
two, κ(0) andq(0), are qualitative, in accordance with the discussion in section 3.1.

4.4. Explicit relations between the parameters and the spectrum

The four parameters in a set of (4.18) and (4.17) are functions ofF as we observed in
section 3. In this section we give explicit relations between them in terms of the theta
functions (see also Yoshino (1988)). We first relateq(0) and κ(0) to F . Instead of the
former we give an expression for the corresponding modulusk. Then we express the other
parameters by usingλ1, λ2, λ3, λ4 and the theta functions (with nomeq) whose arguments
are 1

2κ or 0. In the following we use the notations:

ρ1 = ρ1(0) ≡
ϑ ′1(

1
2κ)

ϑ ′1
ρj = ρj (0) ≡

ϑj (
1
2κ)

ϑj
(j = 2, 3, 4)

for simplicity and clearness. They are all qualitative.
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Let us consider a function (ofλ): (λ− λm)/(λl − λm) (l, m = 1, 2, 3, 4; l 6= m), which
is algebraic onS. It has a double zero atλm and two simple poles at∞ and∞∗, and
becomes unity whenλ = λl . Therefore we obtain

λ− λm
λl − λm =

ϑ1(u(λl)−u(∞))ϑ1(u(λl)−u(∞∗))ϑ2
1(u(λ)−u(λm))

ϑ2
1(u(λl)−u(λm))ϑ1(u(λ)−u(∞))ϑ1(u(λ)−u(∞∗))

. (4.19)

We introduce the notation: [i, j/ l,m] ≡ (λi−λj )/(λl−λm) for brevity. Then equation (4.19)
gives rise to (see figure 2(b))

[1, 3/1, 4] = ϑ2
3ϑ

2
1(

1
4κ)

ϑ2
2ϑ

2
4(

1
4κ)

[2, 3/2, 4] = ϑ2
2ϑ

2
1(

1
4κ)

ϑ2
3ϑ

2
4(

1
4κ)

[2, 4/1, 4] = ϑ2
3ϑ

2
2(

1
4κ)

ϑ2
2ϑ

2
3(

1
4κ)

.

We thus obtain

k2 = ϑ4
2

ϑ4
3

= [2, 3/2, 4]

[1, 3/1, 4]
= (λ1− λ4)(λ2− λ3)

(λ1− λ3)(λ2− λ4)
(4.20)

cn

(
Kκ

π

)
= ρ2

ρ4
= ϑ2

2(
1
4κ)ϑ

2
4(

1
4κ)− ϑ2

1(
1
4κ)ϑ

2
3(

1
4κ)

ϑ2
2(

1
4κ)ϑ

2
4(

1
4κ)+ ϑ2

1(
1
4κ)ϑ

2
3(

1
4κ)

= [2, 4/1, 4]− [1, 3/1, 4]

[2, 4/1, 4]+ [1, 3/1, 4]
= −λ1+ λ2+ λ3− λ4

λ1+ λ2− λ3− λ4
. (4.21)

In (4.21) we have used the duplication formulae (WW, p 488). Equation (4.21) determines
κ uniquely whenF or 0 is given, becauseκ ranges between 0 and 2π over which
cn(Kκ/π) is monotone (decreasing). In a similar manner as (4.21) we obtain (note
[1, 4/2, 4] = [2, 4/1, 4]−1)

dn

(
Kκ

π

)
= ρ3

ρ4
= [1, 4/2, 4]− [2, 3/2, 4]

[1, 4/2, 4]+ [2, 3/2, 4]
= λ1− λ2+ λ3− λ4

λ1+ λ2− λ3− λ4
(4.22)

which has a similar form to (4.21), but cannot play as a perfect substitute for (4.21) because
dn(Kκ/π) is not monotone in 0< κ < 2π .

In order to expressγ (F ) we consider a function:(λ − λm)8(λ;F). Its logarithmic
differential is of the third kind with poles atλm (residue= 2) and∞ (residue= −2), and
it takes the valueγ (F )2 whenλ→∞∗ (see (4.6)). We thus obtain

(λ− λm)8(λ;F) = γ (F )2
ϑ2

1(
1
2κ)ϑ

2
1(u(λ)−u(λm))

ϑ2
1(u(λm)−u(∞∗))ϑ2

1(u(λ)−u(∞))
which gives rise to

λ1− λ3 = 4γ (F )
ϑ2

1(
1
4κ)ϑ

2
3(

1
4κ)

ϑ2
2ϑ

2
4

λ2− λ4 = 4γ (F )
ϑ2

2(
1
4κ)ϑ

2
4(

1
4κ)

ϑ2
2ϑ

2
4

where we have applied the duplication formula toϑ1(
1
2κ). It is then straightforward to have

γ (F ) = λ1+ λ2− λ3− λ4

4ρ4
(4.23)

by using the duplication formula forϑ4(
1
2κ). We can derive a similar expression that makes

reference toρ2 or ρ3 instead ofρ4, by substituting (4.21) or (4.22) into (4.23).
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Finally we settle3(F) and at the same timeω(F). Let us expand expression (4.8)
around∞. The l.h.s. becomes (3.7). We can readily expand the r.h.s. by using the
expansions (use (3.12) for the first one):

1u ≡ u(λ)− u(∞) = 1
2ω(F)[λ

−1+ 1
4(λ1+λ2+λ3+λ4)λ

−2+O(λ−3)]

ϑ1(u(λ)− u(∞)) = ϑ ′11u+O(1u3)

ϑ1(u(λ)− u(∞∗)) = ϑ1(
1
2κ)+ ϑ ′1( 1

2κ)1u+O(1u2).

Then we obtain by comparing the terms ofλ1 andλ0 (noteω(F)/γ (F ) is qualitative as we
observed in section 3.5)

ω(F) = γ (F )2ϑ1(
1
2κ)

ϑ ′1
(4.24)

3(F) = 1
4(λ1+ λ2+ λ3+ λ4)− γ (F )ρ1. (4.25)

Comparing (4.24) with (4.17), we find thatω(F) (defined by (3.12)) equals the angular
frequency of the periodic wave, as expected in section 3.5. We note that equation (4.24) is
substantially the same as the dispersion relation (2.7) in section 2. Substituting (4.23) into
(4.24) we obtain an alternative expression forω(F):

ω(F) = π

4K
(λ1+ λ2− λ3− λ4)sn

(
Kκ

π

)
which is written by using a more familiar (Jacobian) function, but is less fit for solution
(4.18) that makes no direct reference toλ1, λ2, λ3 or λ4.

To make the relations clearer expressF , i.e. λ1, λ2, λ3 and λ4, as functions of the
four parameters,γ (F ), 3(F), κ(0) andq(0). From equations (4.21)–(4.23) and (4.25) we
obtain

λ1 = 3(F)+ γ (F )(ρ1− ρ2+ ρ3+ ρ4)

λ2 = 3(F)+ γ (F )(ρ1+ ρ2− ρ3+ ρ4)

λ3 = 3(F)+ γ (F )(ρ1+ ρ2+ ρ3− ρ4)

λ4 = 3(F)+ γ (F )(ρ1− ρ2− ρ3− ρ4)

(4.26)

where we should note that such an expression asλ1 = λ1(γ,3, κ, q) = 3+γ [ρ1(κ, q)−· · ·]
etc is rather sound. Equations (4.26) manifest the (quantitative) roles ofγ (F ) and3(F)
again.

In section 2 we referred to (2.7), which is equivalent to (4.24), as the dispersion relation,
i.e. we regardedκ as varying independently of the other parameters. It might then be helpful
to know howF varies in this picture. For this purpose we give figure 4, which is easily
obtained by (4.26).

4.5. Time reversal

Equation (1.1), i.e. the original equation of motion, bears time reversal symmetry. Namely,
if yn(t) is a solution, thenyn(−t) must also be a solution. However, our solution, i.e. a set
of (4.18) and (4.17), does not explicitly exhibit this property because we did not conserve
this symmetry in the Lax-form variables (see (3.1) and (3.4)). In the present treatment the
reversal of time corresponds to the reversal of the spectrum, which we show in the following
(see also remark (ii) in section 2).
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λ1
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λ3

λ4

2π

0−2
0

π
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k2= 0.5
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0−2
0

π

κ

2λ

k2= 0.95(a) (b) 

Figure 4. The spectrumF versusκ with k2 (i.e. q) fixed. The quantitative parameters are kept
asγ (F ) = 1 and3(F) = 0, i.e. with no expansion (or shrinkage) nor translational motion.

By the superscript ‘r’, we mean a reversal ofF , i.e.

F r = {λ| − λ ∈ F } = [λr
4, λ

r
3] + [λr

2, λ
r
1]

λr
m = −λ5−m (m = 1, 2, 3, 4)

and0r is the corresponding class. Note thatλr
m are chosen to be in descending order. We

obtain

γ (F r) = γ (F ) 3(F r) = −3(F) (4.27)

because we readily find8(λ;F r) = −8(−λ;F) by definition (see section 3.3). We also
obtain

q(0r) = q(0) κ(0r) = 2π − κ(0) ω(F r) = ω(F) (4.28)

from (4.20), (4.21) and (4.24), respectively. We note that the first two of (4.28) directly
give

ρ1(0
r) = −ρ1(0) ρ2(0

r) = −ρ2(0) ρ3(0
r) = ρ3(0) ρ4(0

r) = ρ4(0)

which without a doubt confirm (4.23), (4.25) and (4.26) forF r.
Now let us denote expression (4.18) (along with (4.17)) byyn(t;F,A, δ) with all

parameters specified. Then we find

yn(−t;F,A, δ) = yn(t;F r, A,−δ) (4.29)

by using (4.27) and (4.28). Namely,yn(−t) surely becomes a solution but it corresponds
to the reversed spectrum.

4.6. Multigap cases

Until now we have dealt with a single-gap spectrum. We nevertheless note that the procedure
we have presented is applicable with some modifications to the multigap spectrum cases.
In the following we briefly refer to them. We will report the details elsewhere.

The arguments in sections 3 and 4.1–4.3 require only slight modifications. Letp be
the number of gaps, i.e. if there is 2p + 2 parameters (bandedge points), then the relevant
Riemann surface is of genusp. The classification of spectra in section 3.1 is evidently
valid and there should be 2p qualitative parameters. In thep-gap case du(λ;F), u(λ;F),
κ(0) andω(F) becomep-dimensional vectors, andτ(0) becomesp-dimensional symmetric
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matrix, which introduces the Riemann theta functions (ofp variables) instead of the elliptic
theta functions.

To view of the general properties of8(λ;F) andgn(λ;F) we need no modifications
(inclusive of the equation of motion (4.15)), which both remain scalar functions (see Yoshino
1987). Two quantitative parameters,γ (F ) and3(F), are thus defined in the same manner,
and expansions (4.7) remain valid. The number of the zeros and that of the poles of
gn(λ;F), not counting∞ (zero) nor∞∗ (pole), both becomep with exactly one zero and
one pole being in each gap (the sheets they belong to being indefinite). These facts make
(4.18), if ϑ4(·) is replaced by an adequate Riemann theta function, be a solution also in the
p-gap case. Equation (4.24) (or (4.16)) becomes a form of linear simultaneous equations
for p elements ofω(F) (or ∂tσ ).

More modifications are necessary for the argument in section 4.4. One cause is that
we know far less formulae in view of the Riemann theta functions than the elliptic theta
functions, for example those corresponding to the duplication formulae we often used. One
problem we should solve is what we should choose as 2p qualitative parameters.

5. One-soliton limit

We derive a one-soliton solution from the simply periodic solution by taking a limit. We
use the expression in section 4. The limit we should take is letting either subband shrink
to a point, i.e.λ1 → λ2 + 0 (case 1) orλ4 → λ3 − 0 (case 2). In the following we treat
case 1. Case 2 is substantially the same as case 1 because we can relate these two cases to
each other by reversing the spectrum (see section 4.5).

We take the limit by keeping bothγ (F ) and3(F) fixed. This is always possible because
we can pick a spectrumF out of any class such thatγ (F ) and3(F) equal (arbitrarily)
given values. We thus begin with an estimation of the two qualitative parameters. We
obtaink→ 1−0 from (4.20), which impliesq → 1−0 andτ →+i0. The other parameter
κ then becomesκ = O(K(k)−1)→+0 from (4.21).

Becauseq → 1− 0, we should apply Jacobi’s imaginary transformation (WW, p 474),
which gives rise to the theta functions with the complementary nomeq ′ (→ +0). In the
following we specify the nomes in the arguments. The estimate forκ implies κ/τ is kept
finite in the limit. We therefore letξ = iκ/2τ (∈ R, > 0), and then take the limitq ′ → +0
keepingξ fixed (in addition toγ (F ) and3(F)). The qualitative parameters are nowq ′ and
ξ , and there remains onlyξ when the limit is taken.

Relation (4.24) reads as
ω

κ
= −iγ (F )

exp(ξκ/2π)ϑ1(iξ, q ′)
ξϑ ′1(0, q ′)

→ γ (F )
sinhξ

ξ

becauseϑ1(z, q
′) = 2q ′1/4 sinz +O(q ′9/4) (WW, p 464). We thus rewrite (4.17) as

ivn
2τ
= (nκ−ωt) ξ

κ
+ δ→ nξ − tγ (F ) sinhξ + δ ≡ wn (∈ R) (5.1)

where we have redefined an arbitrary phase factorδ. We should regardwn as finite, which
implies vn→ 0. The significant part of solution (4.18) is hence written as

ϑ4(
1
2vn−1, q)

ϑ4(
1
2vn, q)

= exp

[
ξ

2π
(vn−1+vn)

]
ϑ2(vn−1/2τ, q ′)
ϑ2(vn/2τ, q ′)

→ coshwn−1

coshwn

becauseϑ2(z, q
′) = 2q ′1/4 cosz +O(q ′9/4). Equation (4.18) then becomes

yn = A+3(F)t − 2n ln γ (F )+ ln

(
coshwn−1

coshwn

)
(5.2)
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Figure 5. The spectrumF versusκ with ξ fixed. The quantitative parameters are kept as
γ (F ) = 1 and3(F) = 0. The soliton limit isκ →+0.

which is written by using three (significant) parameters:γ (F ), 3(F) andξ . The last term
in (5.2) expresses a soliton, whose velocity is, we note, proportional toγ (F ).

We here impose the boundary condition. As equation (5.2) suggests, it should be written
as |yn| < ∞ and dyn/dt → 0 for n→ ±∞. This gives rise to the same result as before,
i.e. the quantitative parameters come to be definite asγ (F ) = 1 and3(F) = 0. We cannot
imposeyn→ 0 atbothof ±∞ while it is possible to imposern→ 0, as is well known. We
have successfully obtained one-soliton solution (see Toda (1981)). The bandedge points,
given by (4.26), now become

λ1, λ2→ 2 coshξ λ3→ 2 λ4→−2

becauseρ1, ρ4 → coshξ andρ2, ρ3 → 1. Figure 5 is given to help the reader understand
the limit intuitively.

It is easy to take case 2 into consideration. Equation (4.29) states that we can obtain
the solution corresponding toF r (i.e. in case 2) by replacingt → −t in the solution
corresponding toF (i.e. in case 1). Thus, we can regard (5.2) as inclusive of both cases 1
and 2, if we readwn aswn ≡ nξ ± tγ (F ) sinhξ + δ instead of (5.1) (note the second term
in (5.2) can be readily matched, if necessary, by the translation ofF ). Evidently a mirror
reflection (aboutλ = 0) of figure 5 becomes the case 2 version of figure 5.

6. Concluding remarks

In this paper we have been concerned with a simply periodic solution in the Toda lattice.
By using the identities of the elliptic theta functions we first (in section 2) showed that
equation (2.1) accompanied with (2.7), not with (1.4), represents a simply periodic solution.
We next made the solution clearer by deriving and discussing it from the viewpoint of the
inverse spectrum problem. We note relation (4.24), which is essentially equivalent to (2.7),
was obtained in due course of the derivation. We also note that two functions,gn(λ;F)
and8(λ;F), played essential roles.

We finally noted that the Toda lattice has not yet been fully understood. In this paper
we referred to a simply periodic solution (and one-soliton solution as the limit) only. It
seems that there are many problems left indefinite in the Toda lattice problem.
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